A Sylvester-Arnoldi type method for the generalized eigenvalue problem with two-by-two operator determinants

نویسندگان

  • Karl Meerbergen
  • Bor Plestenjak
چکیده

In various applications, for instance in the detection of a Hopf bifurcation or in solving separable boundary value problems using the two-parameter eigenvalue problem, one has to solve a generalized eigenvalue problem of the form (B1 ⊗A2 −A1 ⊗B2)z = μ(B1 ⊗ C2 − C1 ⊗B2)z, where matrices are 2 × 2 operator determinants. We present efficient methods that can be used to compute a small subset of the eigenvalues. For full matrices of moderate size we propose either the standard implicitly restarted Arnoldi or Krylov–Schur iteration with shift-and-invert transformation, performed efficiently by solving a Sylvester equation. For large problems, it is more efficient to use subspace iteration based on low-rank approximations of the solution of the Sylvester equation combined with a Krylov–Schur method for the projected problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Arnoldi like method for the delay eigenvalue problem

The method called Arnoldi is currently a very popular method to solve largescale eigenvalue problems. The general purpose of this paper is to generalize Arnoldi to the characteristic equation of a delay-differential equation (DDE), here called a delay eigenvalue problem. The DDE can equivalently be expressed with a linear infinite dimensional operator which eigenvalues are the solutions to the ...

متن کامل

A linear eigenvalue algorithm for the nonlinear eigenvalue problem

The Arnoldi method for standard eigenvalue problems possesses several attractive properties making it robust, reliable and efficient for many problems. Our first important result is a characterization of a general nonlinear eigenvalue problem (NEP) as a standard but infinite dimensional eigenvalue problem involving an integration operator denoted B. In this paper we present a new algorithm equi...

متن کامل

A Krylov Method for the Delay Eigenvalue Problem

The Arnoldi method is currently a very popular algorithm to solve large-scale eigenvalue problems. The main goal of this paper is to generalize the Arnoldi method to the characteristic equation of a delay-differential equation (DDE), here called a delay eigenvalue problem (DEP). The DDE can equivalently be expressed with a linear infinite dimensional operator whose eigenvalues are the solutions...

متن کامل

Implicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem

We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with su...

متن کامل

Fast Inexact Implicitly Restarted Arnoldi Method for Generalized Eigenvalue Problems with Spectral Transformation

We study an inexact implicitly restarted Arnoldi (IRA) method for computing a few eigenpairs of generalized non-Hermitian eigenvalue problems with spectral transformation, where in each Arnoldi step (outer iteration) the matrix-vector product involving the transformed operator is performed by iterative solution (inner iteration) of the corresponding linear system of equations. We provide new pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015